Test 1 - Abstract Algebra

Dr. Graham-Squire, Spring 2016

Nam€	e:								
I pled	dge that I ha	ve neither	given nor	received	any	unauthorized	assistance on	this ex	am
	_			(signate	\overline{ure}				

DIRECTIONS

- 1. Don't panic.
- 2. Show all of your work and <u>use correct notation</u>. A correct answer with insufficient work or incorrect notation will lose points.
- 3. Cell phones and computers are <u>not</u> allowed on this test. Calculators <u>are</u> allowed, though it is unlikely that they will be helfpul.
- 4. Make sure you sign the pledge above.
- 5. Number of questions = 6. Total Points = 35.

1. (5 points) Consider the following Cayley table for a group with elements $\{1,2,3,\ldots,12\}$:

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	3	4	5	6	1	8	9	10	11	12	7
3	3	4	5	6	1	2	9	10	11	12	7	8
4	4	5	6	1	2	3	10	11	12	7	8	9
5	5	6	1	2	3	4	11	12	7	8	9	10
6	6	1	2	3	4	5	12	7	8	9	10	11
7	7	12	11	10	9	8	1	6	5	4	3	2
8	8	7	12	11	10	9	2	1	6	5	4	3
9	9	8	7	12	11	10	3	2	1	6	5	4
10	10	9	8	7	12	11	4	3	2	1	6	5
11	11	10	9	8	7	12	5	4	3	2	1	6
12	12	11	10	9	8	7	6	5	4	3	2	1

Answer the following questions about the group given above:

- (a) Find the identity element. How do you know it is the identity?
- (b) Find the inverse of 2. How do you know it is the inverse?
- (c) Find $\langle 5 \rangle$, that is, the cyclic subgroup generated by 5.
- (d) Find an Abelian subgroup of order 6. How do you know it is a subgroup?

2. (5 points) Consider again the Cayley table from the previous page, and answer the following questions:

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	3	4	5	6	1	8	9	10	11	12	7
3	3	4	5	6	1	2	9	10	11	12	7	8
4	4	5	6	1	2	3	10	11	12	7	8	9
5	5	6	1	2	3	4	11	12	7	8	9	10
6	6	1	2	3	4	5	12	7	8	9	10	11
7	7	12	11	10	9	8	1	6	5	4	3	2
8	8	7	12	11	10	9	2	1	6	5	4	3
9	9	8	7	12	11	10	3	2	1	6	5	4
10	10	9	8	7	12	11	4	3	2	1	6	5
11	11	10	9	8	7	12	5	4	3	2	1	6
12	12	11	10	9	8	7	6	5	4	3	2	1

- (a) Find two elements that do NOT commute.
- (b) Find a non-identity element that is its own inverse.
- (c) Show through an example that the group is associative. That is, take three elements a, b, and c (none of them the identity, that is too easy) and show that (ab)c = a(bc).
- (d) Find a non-cyclic subgroup of either order 4 or of order 6.

3. (8 points) (a) Let H be the subgroup of S_6 (S_6 =the group of permutations of 6 elements) where H is defined by

$$H = \{ \alpha \in S_6 \mid \alpha(5) = 5 \}$$

In other words, H is the subset of elements in S_6 that send 5 to itself. Prove that H is a subgroup of S_6 .

(b) Let J be the subgroup of S_6 where J is defined by

$$J = \{ \beta \in S_6 \, | \, \beta(3) = 4 \}$$

In other words, J is the subset of elements in S_6 that send 3 to 4. Is J a subgroup of S_6 ? If so, prove it. If not, explain why not.

4. (7 points) (a) Let G be the set of elements of the form ax + b, where x is a variable and $a, b \in \mathbb{Z}_{101}$ (Note that 101 is a prime number, which you can use without proof). Assuming we use the binary operation of addition modulo 101, prove that G is a group.

(b) Is the group G a cyclic group? If so, what is it generated by? If not, explain why not (do not need a full proof).

5.	(5 points) (a) Find all generators of \mathbb{Z}_{20} .
	(b) Find all generators of $U(18)$ (recall that $U(n)$ is the group of positive integers less than n that are relatively prime to n).
	(c) Why is \mathbb{Z}_{20} not a group if the binary operation is multiplication modulo 20?

- 6. (5 points) Choose one of the following proofs to do (you do NOT have to do both):
 - Let G be a group. Prove that Z(G), the *center* of a group, is always a subgroup of G. (Recall that the center of a group is the set of all elements in G that commute with every element of G).
 - Prove the right cancellation property for a group G. That is, prove that for all $a,b,c\in G,\,ba=ca$ implies that b=c.

Extra Credit(1 point) Prove that a group of order 4 cannot have a subgroup of order 3 (Hint: use a Cayley table).